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Abstract 

Dual energy decomposition in Digital Radiography consists on 

the extraction of two tissues (frequently bone and soft tissue) 

from two acquisitions at two different source voltages (low and 

high energy). Most of the proposed methods in the literature do 

not explore the practical considerations that have to be 

considered in order to incorporate the procedure into a real 

digital radiography system. In this work, we study practical 

issues such as the optimal design of the calibration phantom and 

possible problems in calibration process derived from the 

positioning of the phantom and the mechanical misalignments of 

the system. As a result, we define a complete protocol to 

incorporate dual energy decomposition into a Digital 

Radiography system. 

1. Introduction 

Dual energy decomposition, based on the acquisition of 

two images at different voltages, enables the 

characterization of different tissues (frequently bone and 

soft tissue). Its clinical benefit has been demonstrated in 

several applications such as the identification of lung 

lesions hidden by the ribs. Figure 1 shows an example of 

the low and high energy data and the soft tissue and bone 

images extracted. 

 

Figure 1. Top: low (left) and high (high) energy 

radiography. Bottom: soft tissue (left) and bone (right) 

images after dual energy decomposition 

Several methods have been proposed in the literature. In 

1976, Alvarez et al [1, 2] set the basis of this technique by 

modeling the high and low energy data using polynomial 

functions and solving the resulting non-linear system with 

the Newton-Raphson iterative method. In [3, 4], the 

authors presented an alternative direct approximation, 

modeling directly the resulting images in order to avoid 

iterative algorithms. Both methods require a previous 

calibration with different combinations of bone and soft 

tissue to obtain the model parameters. 

Another different model was proposed in [5], based on 

the so-called iso-transmission lines, that models the data 

as straight lines instead of third order polynomial 

functions. In [6], the authors proved that the use of conic 

and cubic equations could accelerate the calibration 

significantly. The problem with these two methods is that 

they imply a more complex formulation. 

Most of the proposed methods describe the theory 

fundamentals but do not address any of the practical 

issues of implementation in a real system. In this work, 

we describe a suitable algorithm for a Digital 

Radiography system, design the optimal calibration 

phantom and study the effects of errors in the procedure 

with simulations. As a result, we define a new complete 

protocol for incorporating dual energy decomposition into 

a Digital Radiography system and solving the practical 

problems. 

2. Design of the protocol for dual energy 

decomposition 

2.1. Digital Radiography System 

We have studied the practical considerations by 

simulating a clinical digital radiography system with the 

geometry described in Figure 2. For this purpose, we used 

a simulation tool developed by our group, implemented in 

CUDA language and accelerated using parallel processing 

in GPUs. 

 

Figure 2. Scheme of the radiography system geometry 



 

For a polychromatic source the measured data for the low 

and high acquisitions (IL and IH respectively) are modeled 

with the Beer’s equation: 
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where 
0,LI ,

0,HI  are the intensities of the X-ray beam 

emitted from the source for low (L) and high energy (H); 

and (
S ,

B ) and ( ( )Sm  , ( )Bm  ) are the physical density 

and mass attenuation coefficients for soft tissue (S) and 

bone (B) respectively. The mass attenuation coefficient 

for each material depends on the photon energy (ε) and 

has been extracted from the National Institute of Standard 

and Technology (NIST) data; the polychromatic spectra 

of 70 KVp (low) and 140 KVp (high) have been 

simulated using the TASMIP model [8]. tS and tB, the 

quantities of interest that will form the images of bone 

and soft tissue (see Figure 1, bottom) are the total 

thickness of bone and soft tissue traversed along the path 

L followed by the X-ray:  
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Preliminary tests were done with a public domain 3D 

mouse atlas (http://neuroimage.usc.edu/neuro/Digimouse) 

which allows for a good definition of a complete thorax 

with four different soft tissues and bone. In order to 

translate to a clinical system we adapt it to a human 

thorax both in size (40.5x17.5x28.5 cm) and densities 

(values extracted from [9]). 

2.2. Dual energy algorithm 

From equations (1) and (2) we can see that is not possible 

to obtain the tS and tb directly because of the non-linear 

relationship between them and the data. 

We have implemented the direct approximation method 

[3, 4] for dual energy decomposition because the 

calibration procedure is simple and fast, and the 

decomposition is direct, avoiding the need of an iterative 

algorithm. Instead of solving the non-linear system (1) 

and (2), this method approximates the soft tissue and bone 

traversed thicknesses ( st  and Bt ) separately using a 

model based on third order polynomic functions: 

2 2 3 3

0 1 2 3 4 5 6 7s H L H L H L H Lt a a d a d a d d a d a d a d a d           (4) 

2 2 3 3

0 1 2 3 4 5 6 7B H L H L H L H Lt b b d b d b d d b d b d b d b d           (5) 

where tS and tB are the unknowns (soft tissue and bone 

images) and 
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 are the high and 

low energy log measured data. The polynomial 

coefficients ai and bi are obtained in a calibration step that 

consists on the acquisition of different known 

combinations of two materials of interest with high and 

low energy (similar to soft tissue and bone): dH and dL in 

the equations system. The thicknesses of bone and soft 

tissue equivalent materials (tS and tB in the equations) are 

simulated by projecting the calibration phantom. This 

requires to include in the simulator the exact geometry of 

the system and positioning of the phantom in order to 

estimate the X-ray trajectories. Figure 3 shows these 

images for the calibration phantom depicted in Figure 4. 

Once we have tS, tB, dH and dL, the calibration coefficients 

ai and bi are found by solving the non-linear system using 

least squares and saved in a calibration file.  

 

Figure 3. Top: low (left) and high (right) log-data of the 

phantom. Bottom: tS and tB images of the phantom 

For any dual energy study, we can obtain soft tissue and 

bone, tS and tB, images like those in bottom panel of 

Figure 1 from the equations in the direct form (4) and (5). 

2.3. Design of the calibration phantom 

To design the optimal calibration phantom we need to 

decide the material and the size/shape. The size and shape 

will influence the sampling of material thicknesses 

traversed (tS and tB). The selected shape is that shown in 

Figure 4, where the plane formed by Dim_u and Dim_z is 

stitched to the detector plane, as suggested in [4], which 

gives a good sampling of different thicknesses and is easy 

to manufacture  

 

Figure 4. Scheme of the calibration phantom 

In order to find the appropriate dimensions for the system 

under study, we have simulated several calibration 

phantoms with different dimensions from 10.8 to 27 cm 

(square and rectangular ones). The maximum thickness 

was selected taking into account that we need to reach the 

maximum thickness of soft tissue (~20 cm) and bone (~6 

cm) in a human body, but also using a portable phantom 

that does not exceed the detector dimensions. We chose a 

phantom with both parts equal because it is easier to 

assemble. 

http://neuroimage.usc.edu/neuro/Digimouse


 

In Figure 5 we present the histogram of traversed 

thickness for the different calibration phantoms. 

 

Figure 5. Histogram of the thicknesses of the phantoms 

with different dimensions 

A planar histogram means that the sampling is constant 

along the different thicknesses. Due to the shape of the 

phantom, Dim_v (see Figures 3 and 4) gives the 

maximum thickness; Dim_u and Dim_z provide the total 

number of thicknesses. Based on our results finally 

selected a phantom of 27 x 27 x 27 cm. 

Regarding the two materials of the phantom, the a priori 

intuitive idea is that they should be similar in density and 

mass attenuation coefficient to soft tissue and bone. We 

have simulated the acquisitions of different phantoms 

made of different materials: soft tissue, water, PMMA 

and A-150 Tissue-Equivalent Plastic for the case of the 

soft tissue-material; and bone, Polytetrafluoroethylene 

(“Teflon”), B-100 Bone-Equivalent Plastic and aluminum 

for the bone equivalent material. 

Although some materials may seem to be more 

appropriate because their physical density is more similar 

to those of soft tissue and bone, the most suitable are the 

ones which present a mass attenuation coefficient curve 

nearest to the original one. 

 

Figure 6.Mass attenuation coefficients of the different studied 

materials for the energy range where the differences are 

significant (1-60KeV) 

In the case of equivalent soft tissue, the mass attenuation 

curves of the different materials (PMMA and A-150) are 

very close to the soft tissue/water ones (Figure 6, left). 

Based on the mass attenuation curves, it seems that there 

are no significant differences, but in the bone image (tB) 

we can appreciate some areas where the soft tissue has not 

been subtracted. To quantify this, we measured the region 

of interest (ROI) depicted in Figure 7 where should be 

background in the bone image. The bone image with less 

soft tissue is the one made with the plastic A-150 

phantom, 1.16 vs. 1.9 for the PMMA case. That indicates 

that the plastic A-150 is a material more appropriated for 

the dual energy subtraction. 

Regarding the bone equivalent material, the differences 

between the different materials (bone, Teflon, plastic B-

100 and aluminum) both in mass attenuation curves as in 

the decomposed images are significant (Figure 6, right).  

 

Figure 7. Bone tissue images extracted with the implemented 

algorithm when the soft tissue equivalent material of the 

calibration phantom is water (left), plastic A-150 (center) and 

PMMA (right). The yellow square indicates the measured ROI: 

0.7(left), 1.16 (center) and 1.9 (right). 

From these results, we can see that a possible phantom 

could be made of plastic A-150 (soft tissue equivalent 

material) and aluminum (bone tissue equivalent material) 

to perform the dual energy decomposition properly. 

2.4. Error of estimation of material thicknesses 

As explained above, the estimation of the material 

thicknesses is made by simulating the projection of the 

calibration phantom. In a real system, the geometry varies 

with respect to the ideal case due to tolerances of 

manufacturing and mechanical misalignments. Another 

source of error is the manual positioning: we need to 

know the exact position of the calibration phantom in 

order to estimate the material thicknesses by simulation. 

The discrepancies between the real data and the 

simulation will produce errors in the estimation of the 

equivalent soft tissue and bone thicknesses (tS and tB). 

Since these errors in the calibration may influence the 

results, we have studied their effect in the resulting 

images with the dual energy decomposition algorithm 

(Figure 8). 

 

Figure 8. Soft tissue and Bone images obtained when the 

estimation of the thicknesses of the calibration phantom in the 

ideal case (a) and with errors of 20 mm in the u-axis (b), 20 mm 

in the z-axis (c) and 45 mm in the origin to detector distance (d) 



 

We have simulated errors shifts in the u-axis (5, 10, 20 

mm) and z-axis (5, 10, 20 mm) and in the origin to 

detector distance (5, 10, 20 40, 50, 55, 75, 100 mm). 

The most critical direction is along u-axis because the 

change of thickness traversed when moving along the 

phantom diagonal is faster. In Figure 8 (a) we show an 

ideal case knowing the complete geometry and 

positioning of the phantom and in (b), the results when 

the phantom is moved 20 mm in the critical direction (u-

axis). We can see that the decomposition does not work 

well for this value because the ribs appear in the soft 

tissue image (red arrow). For lower values, the differences 

with respect to the ideal case are difficult to appreciate 

visually. 

Due to the phantom design, errors in the calculated 

thicknesses are not so sensitive to movements along the z-

axis. In (c), the images when the phantom is moved 20 

mm in this direction show that this effect is not 

noticeable. 

Finally, in (d) we can see the effect of an error in the 

origin to detector distance of 45 mm. For higher values 

we see the liver in the bone image and from 60 mm the 

ribs do not appear complete. Errors lower that 45 mm in 

the origin to detector distance do not seem to affect the 

dual energy decomposition. 

2.5. Effect of the bed table 

Finally, considering those systems in which there is a 

table bed (not removable) on top of the detector, we have 

studied if the additional amount of bed material affects 

the estimation of material thicknesses. 

To this end, we have simulated a standard table with a 

thickness of 50 mm made of carbon fiber (2 mm 

equivalent Aluminum) in order to see how an additional 

material not taken into account may affect the estimation 

of the thicknesses. 

 

Figure 9. Soft tissue and bone images decomposition when 

there is a table bed of 2 mm equivalent Aluminum. 

As we can see in Figure 9, the soft tissue and bone images 

are close to the original ones. After quantifying the 

images we have verified that the bed material only affects 

in the background values (0.077 vs 0.018 without bed) but 

not in the decomposition because the bed is very thin 

respect to the calibration phantom.  

3. Conclusions 

We have designed a new calibration protocol for dual 

energy decomposition in a Digital Radiography system, 

including the implementation of a suitable algorithm and 

studied technical considerations such as the optimal 

design of the phantom calibration, the error of the 

estimation of material thicknesses and the bed effect in 

the calibration procedure. 

The selected algorithm is the direct approximation, based 

on the modeling of the desired data with third order 

polynomials, which needs a previous calibration. Tests 

have shown that the materials of the calibration phantom 

should be selected in such a way that its mass attenuation 

coefficient is similar to the tissues of interest, but the 

physical density is not so important. This is the case of 

the equivalent bone material where the aluminum has a 

higher density (2.7 gr/cm
3
) vs. the plastic B-100 density 

(1.45 gr/cm
3
) nearest to the ribs bone (1.48 gr/cm

3
).  

On the other hand, the acceptable errors of manual 

positioning are around 10 mm and 40 mm in the u and z 

axis respectively. The effect of error in u-axis is higher 

because it corresponds to the direction where the 

traversed thicknesses change more in the designed 

phantom. Future work includes the study of positioning of 

the phantom using guides to improve these error 

tolerances of the phantom positioning.  

Errors in the origin to detector distance due to tolerances 

in the scanner manufacturing do not affect the result if 

they are below 45 mm. Finally, the material bed does not 

affect the quality of the result. 
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