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Abstract—The computational processing and analysis of Liquid
Chromatography/Mass Spectrometry signals in Metabolomics
has several issues including ion suppression, carryover or changes
in the sensitivity and intensity. Among these problems, the peak
intensity might suffer from important drift effects that may even
constitute the main source of variance in the data, which might
lead to misleading statistical results. We propose a methodology
based on a joint diagonalisation of covariance matrices prior
to a data normalisation to tackle this problem. We compared
our methodology with four other methods by calculating the
Silhouette and Dunn clustering indices as a quality metric. In
this comparison it was found that our methodology had better
performance than any of the other four tested methods.

I. INTRODUCTION

Metabolomics aims to asses the metabolic changes in a
global way to infer biological functions and provide the
detailed biochemical responses of cellular systems [1]. Liq-
uid Chromatography/Mass Spectrometry (LC/MS) devices are
among the most-used experimental setups in metabolomics.
LC/MS analyses of biological samples such as urine or plasma
give high-throughput data having a three index scheme: re-
tention time, mass/charge ratio and intensity values [2]. In
metabolomic data, the intensity values of the variables might
be biased or might suffer from variations due to external
factors. Among these factors is a contribution from the drift
of the experimental devices, due to various causes such as
column ageing in the case of LC/MS, temperature variations
or contamination effects [3]. The presence of peak intensity
drift in the data is an important issue, as its effects can be
important enough to mask the real statistical behaviour of
the data and may indeed be the largest source of variance
in the data [4]. In most LC/MS protocols, quality control
(QC) samples are regularly injected to ensure good analytical
device performance [5]. In LC/MS metabolomics studies the
quality controls have been carried out using pools of biological
samples, spikes with standards or Milli-Q water samples [6].
These quality control samples consist either of a pooling of

all the samples in the study or of a spike-in of some known
metabolites (several classes having different types of QC
samples might be injected). In the data preprocessing stage,
one may distinguish two different steps: data normalisation and
data equalisation. Data normalisation step is the mathematical
process which makes the variables in the data set comparable,
whereas the data equalisation step, makes the samples from the
data set comparable. In the literature, many normalisation and
equalisation methods may be found. Regarding equalisation
methods, an approach using the injected samples for internal
control (i.e. QCs) to fit a smoothed model for the intensity
levels of certain features, and then to correct all the biolog-
ical samples accordingly [5]. The R package sva includes
the ComBat function which compensates the batch effects
on microarray data using an empirical Bayes approach [7].
Equalisation methods based on a sample-wise correction for
LC/MS metabolomic data have also been tested and compared
by Veselkov et al. [4]. Their results suggest that a variance sta-
bilisation transformation of the data, followed by a median fold
change normalisation, gives the best performance as compared
to three other methods. Among the equalisation methods,
the one proposed by Artursson et al., based on component
correction (CC), was developed in the sensor array field [8].
This method is based on the assumption that, in multivariate
data, the drift direction is the first Principal Component (PC) of
a PCA decomposition for a class consisting of measurements
of the same samples. Such samples are known as technical
replicates (i.e. there is no biological or chemical variation in
addition to the variability of the technical replication of the
measure). Once the drift direction is computed, the drift is
removed from the data by subtracting the data projection on
the drift direction from the original data. However, if some
between-class variability is aligned with the drift direction, it
will also be subtracted and some non-drift variability will be
removed. A natural extension of the CC method is the one
proposed by Ziyatdinov et al. which is based in a Common



Principal Component Analysis (CPCA) decomposition [9].
This method proposes modelling the drift contribution in
the data as the direction capturing maximum variance that
simultaneously diagonalises the covariance matrices of a set
of classes. All the variability of the samples in that particular
direction is considered to be drift-induced variability, and the
projection of the data on that direction is subtracted from
the data as in the CC method. In this paper, to find the
drift model, we state the hypothesis that the intensity drift
of the chromatograms is the common variance direction of all
the QC classes that captures the maximum variance. In this
context, we propose a preprocessing method based on a two-
step approach by first equalising the data through a CPCA, and
then normalising the data using a median fold change step.

II. MATERIALS AND METHODS

A. Description of the Data

The samples were analysed by liquid chromatography
coupled with a hybrid quadrupole time-of-flight (LC-q-TOF,
Hybrid quadrupole TOF QSTAR Elite, AB/MDS Sciex) in
positive mode using the protocol proposed by Tulipani et
al. (Tulipani et al. 2011). Throughout all the analysis, data
process quality control (QC) samples were analysed in order
to monitor the stability and functionality of the system. The
sample collecting span was of 18 days and there was a
replacement of the chromatographic column in the process on
day 14. There were 994 study samples and 182 QC samples.
Three classes of QC samples were used for each batch:

• Water: Milli-Q water samples (n=96 samples).
• Spikes: Standard mixture solution (n=48 samples) con-

sisting of 12 metabolites at the final concentration of
5ppm for all of them except for indole-3-acetic-2,2-d2
acid whose final concentration was of 10 ppm.

• Reference: Urine sample belonging to the one volunteer.
(n=38 samples).

B. Preprocessing

All the methods were applied to the chromatograms without
any prior feature detection. The R package XCMS was used
to read the chromatograms of the mzXML files containing
the sample data [10]. The chromatograms were aligned using
an in-house developed R package (UB/UPC). The chromato-
graphic data of all the files read were merged, creating an
n×m chromatogram matrix X . This step required the binning
of the retention time in m bins that were given by the XCMS
package. Therefore, the chromatogram matrix had samples as
rows and retention time as columns (in our case, n = 1176
samples and m = 441 retention time points). Thus, the i-
th row of this matrix corresponds to the chromatogram of
the i-th sample. From here on, the variable j refers to the
retention time bins in the chromatogram matrix. A class-wise
outlier detection and removal procedure was applied to the QC
classes. 9 outlier samples were detected (4 samples in class
reference, 3 in class water and 2 in class spikes).

C. Methods

The five methods compared in this paper (CPCA, CC,
Median fold change, ComBat and our CPCA+Median Fold
Change) have different input parameters. The methods based
on a CPCA decomposition or the CC method involve a class
(or classes) selection step to use them for the drift modelling.
These methods also need as input the number of components
of the drift decomposition which are supposed to be captured.
The ComBat method needs the batch relation for each class,
whereas the Median fold change method does not need any
specific input parameter in addition to the dataset

1) Component Correction: The hypothesis underlying this
method is that the drift direction is found in the first PC of a
reference class. The methodology used to normalise this data
is described in Artursson et. al. [8]. As the feature pattern of
the QC samples was more complex than that of the other two
QC classes, the reference class was selected to generate the
PCA model. Because of this higher complexity, this class is
better able to capture the drift in the data than would a class
with a simpler feature pattern. The methodology proposed
by Artursson et al removes one PC, but the method can be
generalised to remove as many PCs as can be found in the
data. We tested this method removing 1, 2 and 3 PCs.

2) Median Fold Change: The Median Fold Change method
is not focussed on finding the drift direction. Its objective is
to rescale the data to make the median fold changes of the
variables close to zero. The methodology followed in applying
this method is the one of Veselkov et.al., based on a sample-
wise approach [4]. The first step of this method is to compute
the median for each variable, thus obtaining a vector (equation
(1)). This vector is used to rescale the original data set Y into
a new one, Ŷ (see equation (1)).

Ŷij =
Yij

ŷi
where ŷi = mediani(Yij) (1)

To obtain the normalised data set ZM , the data set Y is
divided by the sample median of the matrix Ŷ (defined as
ŵj) as shown in equation (2)).

ZM
ij =

Yij

ŵj
where ŵj = medianj(Ŷij) (2)

where the superscript M refers to Median Fold Change.
3) ComBat: The ComBat method is a function of the R

package sva. This function aims to correct the batch effects,
which are known to be a source of bias, in gene expression
experiments using an empirical Bayes approach; its extension
to LC/MS metabolomic datasets is both natural and straight-
forward.

4) CPCA: CPCA is a generalisation of the PCA decompo-
sition for different classes first introduced by Flury et. al. [11].
Say we have k classes and Σk are the set of their covariance
matrices, then CPCA aims at finding a space such as the
one defined by the V matrix shown in equation (3). In the
space spanned by V , the covariance matrices for all the classes
involved Σk are diagonal.
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Fig. 1. Set of PCA Scoreplots showing the raw data and the effect on data for each method. The class labelled as sample is the study class. The numbers
in brackets on the axes of the plots refer to the estimated variance for that particular direction in the data.

Λk = V T · Σk · V (3)

where Λk is the diagonalised covariance matrix for class k.
Each one of the dimensions of this space is called a Common
Principal Component (CPC). The hypothesis underlying the
CPCA method for drift correction is that the drift direction is
contained in the CPC capturing the largest variance. The CPC
will be computed by using the YQC data set (i.e. there are three
expressions like equation (3), using the different covariance
matrices for the QC classes: Σr, Σwater, Σspikes). In a similar
way as in a PCA decomposition, given the desired number
of CPCs and following a stepwise algorithm, it is possible to
compute the number of CPCs one by one [12]. We have tested
the values Ncomps = 1, 2, 3 separately for this method. Once
the CPCs are found, the data set is projected onto this space
as shown in (4)

Y CPCA
d = (Y · V ) · V T (4)

Y CPCA
d contains the drift component in the data. To eliminate

the drift from the data, the last step is to subtract this drift from
the data (equation 5)

ZCPCA = Y − Y CPCA
d (5)

where ZCPCA is the corrected data set through CPCA.

5) CPCA + Median Fold Change: The method we propose
consists of a two-step approach. Firstly, the data is equalised
by removing the drift using CPCA and, in the second step,
the data is normalised by applying the Median Fold Change
method. As the CPCA method was applied three times with
different number of extracted CPCs (Ncomps in previous
subsection), the proposed method will be computed for the
same number of components (Ncomps = 1, 2, 3).

D. Validation

From the class definition in section II-A, it follows that
a PCA score plot of all the classes should have the classes
clearly separated in different clusters. We propose a quality
measure for peak intensity drift correction methods based on
the standard clustering internal measures Dunn and Silhouette
for the QC classes in the principal plane (the plane explaining
maximum variability of the data) score plot of all the classes
(including the study class). The clustering technique used was
k-means. The R package clValid was used to compute the
quality indices [13]. In general, the greater the Dunn and
Silhouette indices, the better the clustering, meaning that the
QC classes are more easily separable in the principal plane
and that the intra-class variance is lower.

III. RESULTS AND CONCLUSIONS

The top left plot in Figure 1 depicts a PCA score plot for the
raw data using all the classes. The Figure shows that one of
the main sources of variance is the interclass variability with



a similar tendency in all the technical replicates (QC classes).
Therefore, we conclude that there is a clear drift component
(having different sources) that is causing an important drift
of the QC classes and which, in all likelihood, affects the
samples in the study class as well. Table I contains the
Dunn and Silhouette values for all the methods used, whereas
Figure 1 depicts the PCA Scoreplots for the same methods.
The CPCA+Median fold change method shows the highest
clustering values (highest Dunn index when two components
are removed and highest Silhouette index when one component
is removed) and it has a slight advantage over the CPCA
and the Median Fold Change methods. The Silhouette index
(Table I) for the different CPCA methods applied suggests that
the drift seems to be contained in just the first CPC, as the
quality measures go down as more CPCs are removed from
the data. The CC method corrects some of the drift in the
data although a large drift component is still to be found in
the data (Figure 1). The larger Dunn index value for the CC
method as compared to the raw data value is evidence for the
drift correction (Table I). However, this improvement is not
validated by the Silhouette index which remains practically
unchanged as compared to the raw Silhouette value. The
ComBat method seems not to be the most suitable method
for correcting LC/MS metabolomic data despite being used
widely and successfully in the field of gene expression and
methylation data. Although it corrects some batch effects in
the study samples, the batch effects are still important in
the QC classes after the correction (see lower left plot of
Figure 1). The Median Fold Change method considerably
improves both the Dunn and the Silhouette indices. A visual
inspection of the resulting PCA score plot for the Median
Fold Change method confirms this improvement (Figure 1).
Nevertheless, the PCA score plot also shows that the spikes
and water classes have similar shapes and these long shapes
turn out to be caused by residual uncorrected drift effects.
This fact suggests that, as the Median Fold Change method
normalises the data without specifically trying to remove the
drift, there may still be a source of variance in the data caused
by the drift of the experimental device. On the other hand,
because the methods based in the CPCA approach (CPCA and
CPCA+Median Fold Change methods) are developed to model
the drift direction, their resultant datasets show less residual
drift in their corresponding principal plane score plot. Overall,
in the context of LC/MS drift correction, the proposed two-
step methodology shows better clustering properties of the QC
samples for large metabolomic studies than the median fold
change method. The method also shows a robust behaviour
under small sample size conditions. Furthermore, unlike the
median fold change method, the two-step method is able to
capture intensity drifts that covariate with the retention time.
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