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Abstract 
Chromatin Immunoprecipitation followed by sequencing (ChIP-
Seq) is a powerful technology that enables genome-wide 
detection of epigenetic phenomena (i.e., histone modifications). 
The analysis of these experiments involves the use of complex 
computational methods ranging from the data acquisition to the 
functional analysis. The challenge for proper peak detection is 
to distinguish enriched regions from noise. In this work, we have 
implemented three established peak calling methods and 
proposed a new one based on wavelets. The quantitative 
evaluation of the methods performance against an expert 
annotation shows an improved specificity and sensitivity of the 
proposed method.  

1. Introduction 
Sequencing technology has progressed far beyond the 
analysis of DNA sequences. In particular, this technology 
is routinely used today to analyze other biological 
components such as RNA and protein sequences, as well 
as their interaction in complex networks. Furthermore, 
Next Generation Sequencing (NGS) technologies can 
quantify chromatin features, locate DNA modifications 
and identify a number of steps in the cascade of 
information that goes from transcription to translation. 
Moreover, these technologies are key tools to perform 
health-related discoveries such as the regulatory 
mechanisms and expression profiles distinguishing non-
tumoral from malignant cells [1]. 

The process of sequencing DNA starts with the 
fragmentation of the DNA sample into a library of small 
segments. The identified strings of bases, called reads, are 
then reassembled using a known reference genome as a 
scaffold. The raw data from high-throughput sequencing 
experiments are images obtained as the output from the 
next generation sequencing platform. A base caller 
converts the image data to sequence tags, which are then 
aligned to the genome.  

Genome-wide mapping of protein-DNA interactions and 
epigenetic marks is essential for a full understanding of 
transcriptional regulation. The main tool for investigating 
these mechanisms is chromatin immunoprecipitation 
(ChIP). In ChIP, antibodies are used to enrich DNA 
fragments bound to the recognized proteins.  In a ChIP-
Seq assay two signals are obtained: the enriched 
immunoprecipitated signal and the non-enriched input 
signal or control.  

The analysis of ChIP-Seq experiments involves the use of 
complex computational methods. The process goes all the 
way from data acquisition to the functional interpretation 
(Figure1). After mapping the reads to the reference 
genome, a peak detection algorithm is needed to identify 
enriched regions [2]. The peak detection algorithm either 
ranks the detected regions by their absolute signal or by 
the statistical significance of the enrichment in order to 
detect significant peaks.  

In this manuscript, we focus in peak calling on histone 
modification experiments. The characteristics of histone 
modification profiles are diverse ranging from sharp well-
defined peaks surrounding the genome transcription start 
sites to broad diffuse marks on large genomic regions. 
This inherent variability difficulties the differentiation of 
true enriched regions from background noise. To address 
this issue, a group of ‘spectral’ methods capture the shape 
of the histone modification and identify the potential 
enriched regions in the frequency domain, while others 
rely in ‘matched filtering’ to identify the peaks on the 
genomic domain. In this manuscript, we present a novel 
wavelet-based method belonging to the second class and 
demonstrate its suitability for the analysis of this type of 
signals. 

2. Materials and Methods 
2.1. Datasets 

The algorithms implemented have been applied to a 
ChIP-Seq experiment for histone modification analysis 
(H3K4me3) of K562 cell line from the ENCODE project. 
The dataset was downloaded from Gene Expression 
Omnibus (GEO) database (accession number 
GSM733708) [3]. 

2.2. Analysis of ChIP-Seq data 

As shown in Figure 1, the ChIP-Seq experiments can be 
broadly divided in biological sample preparation and 
analysis. In this section, we focus in the description of the 
steps involve in the analysis, in particular, normalization, 
peak detection and annotation. Functional analysis is a 
critical step but no part of the current discussion.  

2.2.1. Normalización 

Before the peak detection, both ChIP and input signals are 
normalized [4] to make them comparable. Then, the ChIP 

 



and input signals are divided into non-overlapping 
windows of a fixed width and read counts are calculated 
for each window. 

2.2.2. Peak detection 

In this manuscript, we have implemented four different 
methods devoted to solve the ChIP-Seq peak calling 
challenge. Two of them belong to (1) the ‘spectral’ group: 
the Model-based Analysis of ChIP-Seq data (MACS) [5] 
and the modified WaveSeq [6]; and the other two (2) to 
the ‘matched filtering’ group: PeakDetection [7] and the 
proposed Zero Crossing Lines (ZCL) detection which was 
inspired on an algorithm for the study of transcriptional 
activity on tiling microarray data [8]. 

As discussed above, ChIP-Seq data is composed by a 
mixture of peaks with diverse characteristics (pike-like 
vs. wide and smooth embedded in a noisy background), 
making this type of data well suited for multi-resolution 
analysis [6]. For this reason, three of the implemented 
methods (i.e., WaveSeq, PeakDetection and ZCL) rely in 
the computation of the continuous wavelet transform 
(CWT). 

The CWT is defined as the convolution of a continuous 
signal s(x) with a translated and scaled mother wavelet 
ѱ(x) as given by [6]: 

CWT(a, b) = 1
√a
∫ s(x)ψ∗ �b−x

a
�dx+∞

−∞ , 

where a is the scale parameter, b is the translation 
parameter, ѱ(x) is the mother wavelet, ѱ(x)*((b-x)/a) is 
the complex conjugated, scaled and translated wavelet 
and CWT is the 2D matrix of wavelet coefficients. The 
wavelet decomposition produces a series of real 
coefficients that measure the correlation between the 
mother wavelet and the signal at a given position and for 
a given scale. 

Model-based Analysis of ChIP-seq data  

In MACS, peaks are marked as candidate when two 
conditions are satisfied: the number of reads in the ChIP 
signal is greater than a user-defined threshold and 
simultaneously, greater than twice the normalized read 
counts in the input signal for that given location.  

The shape parameter (i.e., lambda) of a Poisson 
distribution indicates the average number of events in a 
given time interval. In MACS, instead of using a unique 
value estimated from the whole genome, a shape 
parameter is defined for each candidate peak. The Poisson 
test is then applied and only peaks with a statistically 
significant p-value (p<0.01) are considered true peaks. In 
order to control the number of false positive peaks, we 

perform a False Discovery Rate (FDR) analysis following 
the guidelines given in [9].  

Finally, a clustering algorithm is applied to the remaining 
candidate peaks. All peaks separated a distance below 
1000 base pairs are aggregated together defining the final 
enriched regions. As ChIP-seq experiments often present 
broad peaks, the algorithm typically clusters several 
regions into a single peak.  

Modified WaveSeq algorithm 

The WaveSeq algorithm we have implemented, is a 
modification of the one presented in [6] eliminating the 
use of Montecarlo sampling for the selection of candidate 
peaks. The implemented algorithm is briefly described 
next. The CWT is computed using the Morlet wavelet as 
mother wavelet. Next, the spectrum is estimated from the 
computed wavelet coefficients as the square of their 
absolute value divided by the variance of the signal. The 
regions with the highest spectrum values (belonging to 
the fifth percentile) are identified as candidate peaks. The 
Binomial distribution is used to statistically include them 
as potentially enriched regions. A p-value smaller than 
0.01 is considered statistically significant. A FDR is then 
applied and finally, peaks separated by a user-defined 
number of windows with no significant wavelet power are 
clustered together. 

PeakDetection algorithm 

In the PeakDetection algorithm, the CWT of both ChIP 
and input data sets is computed using the second 
derivative of a Gaussian as mother wavelet. The Signal to 
Noise Ratio is estimated as the ratio between the square 
of the ChIP signal wavelet coefficients and those of the 
input signal [7]. If this value is greater than an empirically 
defined threshold the region is considered as a candidate 
peak. Finally, the regions considered as enriched are the 
output of the candidate peak clustering step defined as for 
the WaveSeq algorithm.  

Zero-Crossing Lines Detection 

As the modified WaveSeq and PeakDetection, the 
detection of the enriched regions in the ZCL is based on 
the computation of the CWT. In this case, the first 
derivative of the Gaussian function is used as mother 
wavelet. Then, the peaks locations are identified as the 
zero-crossing lines of the CWT decomposition. Those are 
obtained by connecting the points across which the 
Gaussian derivative changes sign. In particular, in this 
case, it corresponds to the peak position.  

After zero-crossing lines calculation only those lines with 
a length greater than a pre-defined threshold are 

Figure 1: ChIP-Seq experiment general overview. 

 



considered as putative peaks. Next, a signal filtering is 
performed to eliminate low abundance peak candidates. 
Then, a peak expansion algorithm is applied to improve 
the definition of the peaks (i.e., locate the start and end 
sites). Namely, if the candidate peak is surrounded by 
regions with a number of reads over a user defined 
threshold the peak expands its width. Next, the statistical 
analysis using the Poisson distribution (p<0.01) and FDR 
correction is performed. Finally, the enriched regions are 
identified as those resulting from clustering together those 
candidate regions separated by one window.  

As a distinguish feature, this algorithm can detect 
enriched region for experiments with or without an input 
sample. For experiments with control data, input read 
counts are used to estimate the parameters of the 
distribution. For experiments without it, an estimation of 
the ChIP background is calculated as the mean intensity 
of a sample region where no candidate peaks are found.  

2.2.3. Annotation  

The output from the peak calling algorithms is a list of 
peaks that are significantly enriched. The annotation of 
these peaks to the genes of the reference genome has been 
carried out using the Bioconductor package 
ChIPpeakAnno. Only genes with peaks located in their 
promoter region are considered for further analysis. The 
output of the analysis pipeline is a file in Browser 
Extensible Data (BED) format, which can be easily 
visualized using a genomic browser (for example. The 
Integrated Genomic Viewer, IGV [10]) 

3. Results and Discussion 
In order to compare the peaks and annotated genes 
obtained using the algorithms previously described, we 
have analyzed the chromosome 13 of the ChIP-Seq 
experiment for the study of H3K4me3 histone 
modification in K562 cell line. We consider it to be a 
good representative as its length and the number of 
coding genes present is on the average range of the 
human chromosomes. 

Evaluation of results 

The algorithms were implemented in R and executed 
using default parameters defined for each method. The 
annotation of peaks was performed using the human gene 
code version 19 as reference. 

A robust comparison of the methods is hard to accomplish 
due to the lack of a validated dataset that can be 
considered as the ground-truth. To face this issue, an 
expert has performed manual peak detection. The expert 
carried out two annotations: non-restricted annotation, 
which includes all the observed peaks, and restricted 
annotation which eliminates all the uncertain peaks. 

The visualization of the results in IGV reveals important 
aspects of each method’s performance (see Figure 2). 
MACS detects with high precision narrow but well-
defined peaks. Nevertheless, the method misses some true 
peaks reducing its sensitivity. WaveSeq identifies more 
true peaks than MACS and interestingly, their width is 
accurately estimated. However, the number of false 

positive peaks is higher than for MACS. PeakDetection 
achieves a fairly good performance for the peaks location, 
but overestimates their width. ZCL shows robust peak 
location detection with an accurate width estimation of 
both broad and narrow peaks.  

Figure 3 shows the intersections between the gene lists 
obtained by the annotation of the peaks detected using all 
the computational methods and the two expert 
annotations. The maximum overlap with the expert’s gene 
annotation is achieved by the ZCL algorithm (238 
annotated genes of which 218 are in the expert list). 
Interestingly, although the number of genes detected 
using MACS is lower (110 genes) almost all of them are 
included in the list provided by the expert (94 genes).  

 
Figure 2. Example of peak detection performed by each method 
for chromosome 13. All methods detect the peak, but there 
significant difference in the width estimation. MACS detects a 
very narrow peak; WaveSeq and PeakDetection, a much broad 
peak while ZCL adjust better to the real peak’s width. The latter 
gives the most similar outcome to the expert’s annotation. 

 
Figure 3. Coincidence of genes between methods for 
chromosome 13. The method that shows more overlap with the 
expert’s annotation is ZCL. PeakDetection performs a very poor 
annotation with not so many coincidences with the expert’s 
annotation. 

 



We have calculated the sensitivity and the specificity of 
the algorithms using these results. The best performance 
metrics are obtained by MACS and ZCL (see Table 1). 
The proposed method is the most sensitive considering 
both expert annotations. MACS has also a very high 
specificity, but its sensitivity is very poor.  

 

 Method Sensitivity Specificity 

E
xp

er
t 

MACS 0.33 0.98 

WaveSeq 0.74 0.96 

PeakDetection 0.32 0.97 

ZCL 0.77 0.98 

E
xp

er
t R

es
tr

ic
te

d MACS 0.4 0.98 

WaveSeq 0.86 0.94 

PeakDetection 0.62 0.97 

ZCL 0.88 0.96 

Table 1. Sensitivity and specificity of the annotated genes for the 
four implemented methods with respect to both expert 
annotations. 

Both MACS and ZCL are well suited for the functional 
analysis of annotated genes (i.e., transcription factor 
analysis). However, other applications (i.e., comparison 
of ChIP signal intensity among different experimental 
conditions, sequence motif detection) require accurate 
peak area quantification and size determination. For those 
applications, ZCL would be the method of choice.  

Computational performance 

ChIP-Seq experiments were executed in an Intel Xeon® 
processor server (64 bits, 4 cores, 2 GHz) with 32 Gb 
installed memory running Red Hat Enterprise Linux AS 
release 4 and R 2.15.0. The mean time to execute the peak 
detection algorithms varies between 5 and 15 min. 

4. Conclusions and further work 
In conclusion, all the implemented methods perform fair 
peak detection. In despite of that fact, in our hands, 
MACS and ZCL present the highest specificity while 
ZCL achieves the highest sensitivity. MACS gives a 
precise gene annotation which is very useful for 
functional analysis. ZCL excels also on this but on 
addition, performs an accurate peak width estimation 
which is well-suited for other applications such as 
comparison of experiments, or motif detection.  

All the algorithms have been implemented to be executed 
in a High Performance Computing (HPC) platform. In 
particular, the implementation of the CWT is very 
efficient as multi-scale wavelet-based calculations are 
especially convenient for parallel computing.  

As further work, the functional analysis of the annotated 
genes could be carried out. Such analysis will provide key 
information about how a given histone modification 

affects the gene expression. The systems biology 
applications that such a study would entail are very 
numerous. We could imagine to construct an overview of 
all histone modification profiles existent in the ChIP-Seq 
data of the ENCODE project.  
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